Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells.

نویسندگان

  • Myoung Suk Choi
  • Ju Hoon Oh
  • Sun Mi Kim
  • Hai Young Jung
  • Hwan Soo Yoo
  • Yong Moon Lee
  • Dong Cheul Moon
  • Sang Bae Han
  • Jin Tae Hong
چکیده

Berberine has anti-tumor properties in some cancer cells including prostate cancer, but the exact mechanisms and in vivo effects are unclear. We investigated anti-cancer activity of berberine in vitro and in vivo, and possible mechanisms in prostate cancer cells. Berberine treatment inhibited cell cancer growth in a concentration (0-50 microM) and time- (0-48 h) dependent manner without any growth inhibition in normal human prostate epithelial PWR-1E cells. However, the p53 expressing LNCaP cells were more susceptible against berberine than the p53 lacking PC-3 cells. The cell arrest in G0/G1 phase, apoptotic cell death and the expression of apoptotic cell death proteins Bax and caspase-3 was much higher in berberine-treated LNCaP cells than those in PC-3 cells. Exploration of p53 siRNA or pifithrin-alpha, a p53 inhibitor to the LNCaP cells, suppressed berberine-induced cell death and expression of apoptosis-related proteins. In xenograft in vivo studies, berberine reduced tumor weights and volumes accompanied with apoptotic cell death and increased expression of apoptotic cell death proteins, however, the extent of inhibitory effect was more significant in LNCaP cell-bearing mice. Therefore, these results indicated that berberine inhibited p53-dependent prostate cancer cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

القای آپوپتوز وابسته به p53 در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش‌ساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA

Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...

متن کامل

Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis.

Berberine, an alkaloid, has anti-tumor properties in some cancer cells, but action mechanisms are not clear yet. We here investigated the anticancer activity of berberine and possible mechanisms in human neuroblastoma SK-N-SH and SK-N-MC cells. The p53-expressing cells, SK-N-SH (IC50=37 microM) were more susceptible to berberine than the p53-deficient cells, SK-N-MC (IC50 > or =100 microM) with...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2009